
 1

Objective:

The goal of this project is to develop innovative network control software that will
significantly enhance the Internet’s capability to provide guaranteed and differentiated
quality of services (QoS).

Approach:

To understand the SAAM approach, consider road traffic monitoring and control during
commute hours in a large city such as San Francisco. In this case, radio stations are the
main management entities. The stations send out helicopters to monitor traffic on roads
in their respective coverage regions. The information from the helicopters is aggregated
at the stations and advice is then broadcast, in real-time, to commuters. The advantages
of using these helicopters, which are analogous to the advantages of using SAAM,
include: the monitoring of traffic over long routes ("paths") and the early detection of
congestion. This monitoring permits advice to be given such as, "it will take about 20
minutes to go from the Bay Bridge to the Civic Center following I-80." In contrast, if the
radio stations and helicopters did not exist, each individual motorist could only monitor
traffic within a short radius and could not foresee congestion.

Current network management systems are essentially like road traffic monitoring that
depends mostly on reports from individual motorists. The SAAM architecture, instead,
follows the helicopter model. SAAM achieves timely network management by
employing a set of management servers ("helicopters") that we will refer as SAAM
servers. These SAAM servers, along with their associated mobile agents, periodically
collect state information about the network and maintain "ready to use" path performance
data in a Path Information Base (PIB). For scalability, the SAAM servers will be
organized in a hierarchy. At the lowest level, each server will maintain a PIB for paths
within a small network region. Upper level servers will manage traffic between regions.
Additionally, SAAM is designed to facilitate resource reservations for only real-time,
long-duration flows such as those carrying video, audio, and large data sets. SAAM will
not change how current routers handle best-effort traffic. Thus, the number of flow
requests that a SAAM server needs to process will be easily manageable. The SAAM
servers form a logical overlay network between the management station and the physical
network. As a result, the routers are relieved of routing and network management tasks
that they were never designed to perform.

The information stored in the PIB built by SAAM is much more comprehensive than
solutions arrived at using shortest path algorithms. In particular, a SAAM server will
maintain in its PIB information about all valid paths in the server’s region. Such an
approach has a couple of advantages. First, it provides efficient support for adaptive
routing strategies in which a different routing algorithm (criterion) can be chosen under
different network conditions. Second, it significantly increases the probability of the
seamless re-routing of real-time flows.

The SAAM servers and the routers, which are designed to enhance both Differentiated
and Integrated Services, will use a real-time transport protocol for signaling messages

 2

and agent deployments. Therefore, network management and control tasks will be
performed in a timely fashion. Only a small number of planning tasks will require human
interactions, and the interactions will be limited to the top-level server in a local
administrative domain. SAAM will also have built-in mechanisms to interact with a
reservation protocol (such as RSVP) and provide it useful path information when
requested.

Unlike a telephone network, the Internet consists of many independently operated ISPs.
SAAM can only be progressively deployed. However, this should not be a problem. The
SAAM system will be operated by an independent entity that provides value-added
services to those ISPs that have joined SAAM by installing a local SAAM server and
subscribing to an upper level SAAM server. The ISPs that use SAAM services will
provide more predictable performance to their flows thus attracting more customers.
Moreover, by using SAAM’s efficient resource allocation methods, an ISP will be able to
accommodate more traffic and thus collect more revenues. SAAM will support existing
inter-domain routing protocols. Therefore, whether or not an ISP is using SAAM is
transparent to other ISPs. A non-SAAM ISP can still send traffic through a SAAM ISP.
Each ISP has total control over the operation of its internal SAAM server. The upper
level SAAM server acts like a consultation center providing only performance enhancing
advice to each ISP’s SAAM server. Only the internal SAAM servers carry out the actual
updates to all routers. Therefore, ISPs should have many incentives to use SAAM.

Recent FY-00 Achievements:

I. Basic research on key SAAM components

 (1) Self-repairing Signaling Channels: A two-way signaling channel must be
established between a SAAM server and each router under its control. These channels
must guarantee reliable and timely delivery of signaling messages. Such performance
guarantees must be fault tolerant, i.e., unaffected by changes in network topology caused
by device or link failures. This fault-tolerance requirement could be trivially met by
flooding each signaling message. However, the overhead incurred by flooding would be
too great. Hence, a key requirement for SAAM is the ability to reconfigure the signaling
channels automatically and in near real time to accommodate changes in network
topology. Legacy routing protocols, which try to detect topological changes after they
occur and disseminate the knowledge of these changes hop-by-hop, are too slow for
SAAM signaling channel configuration. We have developed a pro-active approach that
refreshes SAAM signaling channels over short time intervals in anticipation of
topological changes. The overhead of the resulting protocol is very manageable. On
average, each router needs to process two control messages in each refresh cycle. The
protocol also provides a means for each router to periodically report its link state
information to the server without imposing additional processing overhead on the
intermediate routers.

 (2) Intelligent Resource Manager: The effectiveness of a network resource
management scheme depends predominantly on two factors: (1) how complete and

 3

accurate a picture it can obtain about the current state of the network, and (2) how much
processing capacity it can use. SAAM offloads resource management processing from
routers to a small number of servers. It is economically feasible to design large
processing capacity into these servers. Therefore, SAAM has opened a venue for more
sophisticated network resource schemes than are currently available. Based on this
observation, we have focused on optimality rather than complexity in designing the
resource manager to run on a SAAM server. The resulting system supports all service
classes defined by major Internet service models (Integrated Services, Differentiated
Services, and Multi-Protocol Label Switching) in a cohesive manner. It maintains a
comprehensive path information base to aid QoS routing and rerouting and optimizes the
utilization of network resources via adaptive routing and dynamic link provisioning
between service classes.

 (3) Server Fault Tolerance: We have investigated how to make SAAM services
tolerant of server failures. There are two types of server failures. Most are transient and
recoverable like component failures. The others are catastrophic failures, not recoverable
in a short time. For the first type, we examined current commercial offerings and
concluded that several of these might be suitable for SAAM. The second type of failures
can best be dealt with by using a backup server. No commercial product meets the
stringent requirement of SAAM service availability. We have developed a protocol that
can detect server failure and resume full service within fractions of a second. The primary
and backup servers maintain separate signaling channels with the routers. Both servers
collect link state information concurrently. Only the primary server will process and
respond to requests for resources. The backup server uses adaptive polling, with the cycle
time becoming persistently smaller with each unanswered probe, to detect and verify
primary server failure in a timely and reliable manner.

 (4) System Security: Security is particularly important for SAAM because SAAM
uses mobile code, called resident agents, to extend router services. The server loads these
resident agents onto routers dynamically, and the agents then execute on the destination
routers. A scheme to authenticate mobile code is required to prevent an outsider from
installing a malicious resident agent. Also, all signaling messages in SAAM are
authenticated to counter spoofing attacks. The idea of Time-driven Key Sequencing
(TKS) has been explored for speeding up the authentication process. TKS is a scheme to
implement low-overhead key changes in support of the use of efficient cryptographic
algorithms. The general notion is that with frequent key changes, more efficient, but less
time-durable, cryptographic algorithms may be utilized to provide an equivalent level of
protection compared to the use of more time-durable algorithms with long-term keys. A
Kerberos based method is also designed to authenticate new nodes that join a SAAM
network.

 (5) Server Originated Probing: The objective of this work is to add server-based,
router performance sampling capabilities to SAAM. As a router may be misconfigured,
or worse, actively attacked, a server should not rely entirely on link performance data
reported by routers to maintain the network status. The server must have an independent
means to validate link performance reports from a router so that erroneous performance

 4

data can be filtered out before it causes severe service degradation. Thus, the server
launches a probe session by first identifying a data path that goes through the target
router on a designated port. The server then injects a special agent into the two routers
that are upstream and downstream of the target with respect to that path. The agent
installed on the upstream router will create measurement packets and forward them via
the selected data path. These measurement packets are given a header used by an actual
application flow. Therefore, the router under probe will not be able to detect them. The
agent installed on the downstream router will extract these measurement packets based on
a special payload value and collect their performance data (average delay, loss rate, and
throughput). Finally the performance data will be delivered to the server by the
downstream router.

 (6) Path-based network Policy Language (PPL): Existing network policy languages
define policy rules on a per node basis. PPL’s path-based approach for representing
network policies is advantageous in that QoS and security policies can be associated with
an explicit path through the network. This assignment of policies to network flows aids in
new initiatives such as Integrated Services. The more stringent requirement of supporting
path-based policies can be easily relaxed with the use of wild card characters to also
support Differentiated Services and best-effort service. Path-based policies have a
complexity advantage over node-based ones as well. When a policy server associates
policies with nodes rather than paths, a valid path must be constructed for each new
request. This construction not only uses node connectivity information to build the
possible paths, but applies the policy information from each node as well. If the path
generation request involves a combination of service constraints, such as minimum-delay
and least-cost, it becomes an NP-complete problem. Path-based policy is analogous to the
use of static routes. Rather than calculating a route through the network, a valid route is
specified ahead of time. This pre-specified route accelerates the routing process. When a
path is specified ahead of time with the proper policy constraints, this too will accelerate
the response to a path request.

II. Improvements on SAAM Testing Environment

 (1) Configuration Management: We have simplified SAAM testbed configuration
management. A formal test configuration language is defined using XML. A GUI based
application is provided to help users create test configurations in the defined language.
The demo-station has been modified to set up a SAAM testbed based on a test
configuration file.

 (2) Integration: The signaling channel configuration protocol, the backup server
functionality, the server probing capability, and an initial version of the resource manager
have been integrated into the current SAAM prototype.

Results from FY00 are documented on the SAAM public web page, as well as in the
proceedings of peer-reviewed conferences and workshops. More than 10 MS theses and
one PhD dissertation have been or are being produced based on the results.

 5

FY-01 Plans:

The short-term objective for FY-01 is to make the first public release of SAAM. The
code will be released via the Web. Most of the development work planned for this release
has been completed. The major tasks remaining are integration, testing and
documentation.

More research is also planned to enhance various SAAM components. The work is
composed of the following tasks:
 (1) A formal performance analysis will be conducted for the server-based resource
manager. The embedded resource management algorithm will be fine-tuned based on the
performance analysis as well as test results. The advantages of adaptive routing and
dynamic link provisioning will be quantified.
 (2) More analysis will be conducted to validate the security system that has been
designed for SAAM. The complete system will be implemented and tested.
 (3) A compiler will be developed for PPL. It will be able to detect and resolve
conflicts between polices. PPL will be enhanced to allow a policy maker to specify
elaborate procedures for conflict resolution and heuristics to reach a compromise.
 (4) The server originated probing functionality will be integrated with the resource
manager. The open questions that need to be answered for the integration include when to
probe and how to use the probing results.
 (5) Most work done so far is for a single SAAM region. The results will be
extended to multiple regions.

[Geoff: If time and resource permit, a kernel-level router that replaces the current user-
level router emulation will be designed and built to facilitate realistic performance
tradeoff studies.]

Technology Transition:

All SAAM system code, including the SAAM testing environment, will be released to the
public. A Web site will be developed to disseminate the code and encourage feedback
from users. (Several development and research groups have already expressed interest in
experimenting with components of the SAAM system.) We expect that the typical users
will develop new applications (or fine-tune existing ones) that will take advantage of the
differentiated and integrated services capabilities of future networks. Other users may
wish to use the SAAM testing environment to rapidly prototype and test their own server-
based network management algorithms.

Additionally, the NASA Ames Research Center has a need for a centralized network
policy management and enforcement system. To this end, they have expressed an
interest in participating in an alpha test of some of the SAAM components.

